Monthly Archives: August 2012

Science-based Homeopathy

Guest Post Written by Dr. Muhammed Rafeeque, BHMS

The tongue (Lingua, Glossa) is a muscular organ in the oral cavity that is associated with the function of deglutition, taste and speech [click to tweet]. It acts as an easily accessible mirror of the health of a person and indicates the state of hydration of the body. Some characteristic changes occur on the tongue in some abnormal conditions or diseases. Hence, the examination of the tongue is essential and will provide some hints for the clinical and remedial diagnosis.

It is very easy to examine the tongue in a conscious patient. The difficulty may arise in unconscious patients and in non-cooperative patients, especially the children. Small children may cry if we forcefully open their mouth, hence it can be easily examined by gently pressing above the mental-protuberance with the index finger and gradually opening the mouth, the baby will…

View original post 1,692 more words


What Nobel Laureates said on Homeopathy

What Nobel Laureates said on Homeopathy.

Toxic Chemical pesticides on your skin in your house on your front lawn?

INTRODUCTION: Important research on pesticide health effects is reported in the medical journal summaries below. This information is intended to be used to guide public health laws and policies in the work place, residential communities, condominiums, schools, as well as a foundation for city and state laws. The majority of information was acquired by extensive research from the University of Florida and University of South Florida Medical Libraries as well as through the National Library of Medicine Toxline program and PubMed. Credibility is established as each research summary provides detailed source information including the name of the research journal, date, academic institutions involved as well as the names of scientists and physicians involved in the research. The complete journal articles for any summary listed can be ordered from a public library through its “Inner Library Loan Program” or often acquired on the spot at medical university libraries (i.e Shands Hospital Library University of Florida).
Current pesticide health laws and policies are based primarily on documentation showing risks from cancer, immediate death and other acute health effects. However, a new toxicology field known as “Endocrine Disruption” is generating extreme concern among scientists as it now appears that many pesticides can reduce levels of essential hormones regulating growth, metabolism and neurological development in children, as well as affecting hormones involved in aging for adults. For example, common pyrethroid pesticides have been found to alter levels of the critical hormones testosterone, progesterone and estradiol. As pesticides reduce levels of these hormones in the blood, consequences can be seen from mild to catastrophic for the organism. While it now appears that pesticides have been creating this problem for over the past 50 years, it wasn’t until recently that the problem has been identified and addressed in detail. In fact, it wasn’t until 2010 that the EPA initiated the Endocrine Disruptor Screening Program which forces chemical manufacturers to go back and test some high exposure chemicals and pesticides for endocrine disruption potential.

Information compiled by
Wayne Sinclair, M.D. (Board Certified Immunology)
Richard Pressinger, M.Ed.

100 gallons of chemical pesticides are soaked into the soil per 1000 square feet of home area prior to pouring of concrete foundation. Research now shows these chemicals enter into the home years later and are breathed continuously by home occupants. Building a new home? Use alternative methods to this procedure as they are effective and available.
Approximately 75% of all grocery store produce tested positive for various pesticide residues. Over 19% of commercial lettuce from major grocery store chains contained the pesticide DDT or DDE – Although research suggests these levels can affect humans, the EPA does not currently require chemical companies to test their pesticides for detailed immune system effects or subtle neurological effects (i.e. memory, concentration, personality, learning etc).

Click Research Topic – or scroll down to view all research

* Neurological & Behavioral Abnormalities from Home Pyrethroid Pesticide
* Breast Cancer linked to common home pesticide chlordane
* Birth defect rates higher for babies born near agriculture using pesticides
* Mosquito control & agriculture pesticides linked to weakening immune system
* Non-Hodgkins Lymphoma linked to pesticides and chemicals
* Mosquito Repellent DEET linked to brain damage
* Fetal Death and Malformations Linked to Recent Pesticide Exposure
* Neuroblastoma linked to Home Pesticide Exposure
* Miscarriages Linked to living within 1 mile from Agriculture
* Higher Cancer Rate Among Children When Exposed to Indoor Pesticides
* Brain Damage During Pregnancy from Pesticide Chlorpyrifos (Dursban)
* Common Weed Killer (Roundup) Linked to Environmental and Health Problems
* Parkinson’s Disease Higher in Agricultural Areas
* Prostate Cancer Risk Doubles in Pesticide Applicators
* Poison in the Grass – An excellent report on dangers of lawn pesticides.
* Living Near Agriculture Increases Brain Cancer Risk

* Golf Course Superintendents Face Higher Cancer Rate

* Home Pesticides Increase Rate of Child Cancer

* Pesticide Vapors Remain in Indoor Air for Weeks/Months After Application

* Immune System Problems Appear After Indoor Dursban Application

* Flea Home Pesticide Treatment Cause Very High Indoor Air Pesticide Levels

* Brain and Lung Cancer Higher in Pesticide Applicators

* Lawn Pesticides Found to Damage Brain Function

* Birth Defect Linked to Common Lawn Fungicides

* Lawn Pesticides Linked to Increased Cancer Risk

* Hyperactivity Linked to Single Pesticide Exposure

* A.D.D. (Attention Deficit Disorder) and other neurological problems linked to the pesticide Chlordane which contaminates most homes built before 1988.

* Male Infertility Linked to the Pesticide Chlordane

* Pet Bladder Cancer Linked to Flea Dips
* Pet Bladder Cancer Linked to Lawn Pesticides
* Increased Child Cancer due to Pesticides Doctors state at Conference
* Long term infertility damage from pesticides


Home Pyrethroid Pesticide Impairs Cognition and Behavioral Development

SOURCE: Toxicology Letters: 2011, June 24; 23(3):245-51

Background: The home pesticide Dursban (also known as chlorpyrifos) was an organophosphate pesticide used in homes for decades until its ban by EPA in June 2000 (It had been found to cause birth defects and autoimmune disorders). This class of organophosphate pesticides have now been mostly replaced with what is known as pyrethroid pesticides for home pest control. In a study conducted by the Anhui Medical University in China, it was found that animals exposed to the pyrethroid pesticide fenvalerate (which contains esfenvalerate), caused impairment in spatial learning and memory. In addition, the pesticide increased anxiety activities in females. The harmful effects of fenvalerate occurred when the pesticide was exposed to animals during their human equivalent pubertal period. This puberty period in animals (and humans) is a time in which hormones regulate important changes in brain structure and development. The pyrethroid pesticide fenvalerate is believed to be an endocrine disruptor compound. Endocrine disruptor compounds are chemicals which have the ability to mimic natural hormones in the body (such as testosterone, progesterone and estradiol), thereby, fooling the body into believing there is more or less of the natural hormone present.
Chem-Tox Comment: Since having precise levels of natural hormones is critical for proper brain development in teenage students (and reduction of aging for adults), the potential for home pesticides to alter hormone levels during the critical window of development for teenage children, and thereby cause permanent injury to the individual, is of immediate concern.

Anhui Provincial Key Laboratory of Population Heath & Aristogenics
Department of Maternal, Child & Adolescent Health
Anhui Medical University
Anhui, China

Breast Cancer Linked to Home Pesticide Chlordane

SOURCE: Breast Cancer Research and Treatment
Volume 90:55-64, 2005

One in eight women in the United States will develop breast cancer according to the latest statistics. Breast cancer rates in the U.S. are 3-7 times higher than those in Asia. This 2005 study conducted at the US Army Institute of Surgical Research and Texas Tech University Health Science Center in Lubbock Texas found that cancerous human breast tissue contained the chemical heptachlor epoxide (found in the common home pesticide chlordane) at levels 4 times higher than non-cancerous breast tissue. Chlordane was the primary termite prevention pesticide used in over 30 million U.S. homes between the mid 1950’s and 1988. An estimated 50 million U.S. residents are currently exposed to the volatization of this chemical from previously treated pre-1989 homes on a daily basis. (For more information on chlordane go to ).
Dr. Richard A. Cassidy, Sridhar, George M. Vaughan
Tox Free, Inc., Tell City, IN
Texas Tech University Health Science Center, Lubbock, TX
US Army Institute of Surgical Research

Birth Defects Higher in Babies Born to Families
Living near Farming Areas using Pesticides

SOURCE: Environmental Health Perspectives
Volume 111(9):1259-1264, July, 2003

Babies born to families living near wheat growing agricultural areas using chemical pesticides have been found to have a 65% greater risk of having birth defects related to the circulatory/respiratory system. The pesticide category believed to be the culprit is known as chlorophenoxy herbicides that contain the chemical 2,4-D. Chlorophenoxy herbicides are used to kill a variety of weeds and are also commonly used by city and county maintenance departments for grass and weed control along roads, canals etc. Other conclusions of the study found there was over a 100% increase in respiratory/circulatory birth defects in babies if heart malformations were excluded. When looking at musculoskeletal/intergumental anomalies for both sexes in the high-wheat growing counties, there was a 50% increased risk of these types of defects. Infant deaths for male babies (from congenital anomalies related to the birth defects) was over 2.5 times higher than normal. Scientists also found that infants conceived from April-June (the time of primary pesticide application) had a 75% increased risk of being diagnosed with birth defects – compared to birth defect rates for conception during other times of the year.

In conclusion, the scientists stated – “These results are especially of concern because of widespread use of chlorphenoxy herbicides.”

Dina M. Schreinemachers
National Health and Environmental effects Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency, Research Triangle Park, North Carolina

Mosquito Control – Lawn & Agricultural Pesticides
Linked to Immune System Weakening and Frog Mutations

SOURCE: Article below appeared in the San Francisco Chronicle
by Carl T. Hall, Chronicle Science Writer
Original journal article appeared in
Proceedings of the National Academy of Sciences: 99(15):9900-9904, July 23, 2002

Raising new questions about the environmental risks of some widely used farm chemicals, scientists are reporting today the first evidence linking agricultural runoff to grotesque hind-limb deformities in frogs. Researchers said frogs appear to be made more vulnerable to a common parasite when exposed to the pesticides atrazine and malathion. The parasite, a burrowing trematode worm, tends to infect the hindquarters of developing tadpoles. Atrazine is part of a family of chemicals that rank among the world’s most widely used weed killers. Malathion is commonly applied to control mosquitoes and other insects, and pharmaceutical grades are approved for killing head lice. Both products are controversial but considered safe for commercial use in the United States.

At last count, wild frogs with missing or extra hind limbs have been observed in at least 43 states and five Canadian provinces. Earlier studies clearly implicated the trematode parasite but left open the question of what might be causing the apparent increase in the problem.

The latest study, by ecologist Joseph Kiesecker at Pennsylvania State University and edited by UC Berkeley amphibian specialist David Wake, tries to fit in the key remaining puzzle piece. The study appears in the early edition of this week’s Proceedings of the National Academy of Sciences.

Kiesecker said his observations of the common wood frog Rana sylvatica in the wild, followed by controlled studies in his laboratory, produced “compelling” evidence that pesticides can weaken the immune system of exposed amphibians — even at very low concentrations — making the frogs more vulnerable to parasites.

The field studies showed “considerably higher rates of limb deformities where there was pesticide exposure,” Kiesecker said in an interview. “Then the lab experiments helped support the mechanism for what we saw in the field.”

He also looked at another pesticide, a synthetic chemical called esfenvalerate, but did not find the same links to growth anomalies as seen with malathion and atrazine.

For the latter two chemicals, significant effects were seen even at concentrations considered safe for drinking water by the Environmental Protection Agency.

Even these very low levels of exposure could produce “dramatic effects on the immune response” of the animals. And that, in turn, led to significantly more growth defects.

Kiesecker stopped short of endorsing any effort to further restrict use of atrazine and malathion. But he said his results underscored the importance of studying toxic chemical effects in a context approaching the complexity found in natural ecosystems.

In this case, he explained, the two farm chemicals “disturbed host-pathogen interactions” with sometimes devastating effects. But all that would be missed in traditional studies examining only the chemicals and the frogs in isolation.

Some other scientists, backed by the farm-chemical industry, challenged Kiesecker’s results. Although they said the new study was intriguing, they suggested the details couldn’t be trusted until corroborated independently.

Original Journal Article Author Information:
Joseph M. Kiesecker
Department of Biology, Pennsylvania State University
208 Laboratory, University Park, PA

Non-Hodgkins Lymphoma Linked to Pesticides & Chemicals

SOURCE: Annals of Oncology, 5(1):S19-S24, 1994

Introduction: Non-Hodgkin’s Lymphoma (NHL) is a blood cancer that continues to
increase rapidly in industrialized countries. NHL is considered similar to leukemia
by many experts but is characterized by exceptionally high numbers of
“lymphoctye” white blood cells that are manufactured in the body’s lymph glands.

Below is the abstract from this article:

The epidemiology of Non-Hodgkin’s lymphoma (NHL) was reviewed. In the United States, the annual incidence of NHL rose from 5.9 per 100,000 people in 1950 to 9.3 per 100,000 in 1975, to 13.7 in 1989. The elderly showed the greatest increase. Most of the recent increase was not attributable to acquired immune deficiency syndrome. Mortality rates due to NHL were increasing at almost 2% per year. The largest proportional increases occurred in the brain and other areas of the nervous system. Occupational studies have indicated that persons with certain jobs have an increased risk, including farmers, applicators of pesticides, grain millers, wood and forestry workers, chemists, cosmetologists, machinists, printers, and those working in the petroleum, rubber, plastics, and synthetics industries. A three to nine fold increased risk of developing NHL was noted for patients receiving treatment with alkylating agents or radiotherapy. The most extensive data related to pesticides and the occurrence of NHL suggest that exposure to phenoxy herbicides, particularly 2,4-D (94757), is linked to NHL. Flour millers exposed to fungicides and fumigant pesticides had over a four fold increased risk of NHL; long term followup indicated this risk increased to nine fold. An etiologic link between exposure to various solvents and NHL has been defined by recent studies including benzene (71432), styrene (100425), 1,3-butadiene (106990), trichlorethylene (79016), perchloroethylene (127184), creosote (8021394), lead-arsenate (10102484), formaldehyde (50000), paint thinners, and oils and greases. Recent findings also indicated an increased risk of NHL in those exposed to dusts and particles, hair dyes, and cigarette smoke. An association was noted between NHL and Helicobacter-pylori infection. Nitrate contamination of groundwater also may be linked to increased incidences of NHL.

Mosquito Repellant DEET Linked to Neurological Damage

SOURCE: Environmental News Service, May 10, 2002

DURHAM, North Carolina, May 10, 2002 (ENS) – A common ingredient in mosquito and tick repellents may be linked to some neurological problems, a new study suggests.

A Duke University Medical Center pharmacologist is recommending caution when using the insecticide DEET, after his animal studies last year found the chemical causes diffuse brain cell death and behavioral changes in rats after frequent and prolonged use

Mohamed Abou-Donia, PhD has called for further government testing of the chemical’s safety in short term and occasional use, particularly in view of Health Canada’s recent decision to ban products with more than 30 percent of the chemical.

Every year, about one-third of the U.S. population uses insect repellents containing DEET, available in more than 230 products with concentrations up to 100 percent. While the chemical’s risks to humans are still being intensely debated, Abou-Donia says his 30 years of research on pesticides’ brain effects indicate the need for caution among the general public.

His numerous studies in rats, two of them published last year, demonstrate that frequent and prolonged applications of DEET cause neurons to die in regions of the brain that control muscle movement, learning, memory and concentration. Rats treated with an average human dose of DEET – 40 milligrams per kilogram body weight – performed far worse than control rats when challenged with physical tasks requiring muscle control, strength and coordination.

Such effects are consistent with physical symptoms in humans reported in the medical literature, such as those experienced by some Gulf War veterans, said Abou-Donia.

“If used sparingly, infrequently and by itself, DEET may not have negative effects – the literature here isn’t clear,” Abou-Donia said. “But frequent and heavy use of DEET, especially in combination with other chemicals or medications, could cause brain deficits in vulnerable populations.”

Children are at particular risk for subtle brain changes caused by chemicals in the environment, because their skin more readily absorbs them, and chemicals may affect their developing nervous systems, said Abou-Donia.

Preparations like insecticide based lice killing shampoos and insect repellents are assumed to be safe because severe consequences are rare in the medical literature. Yet subtle symptoms, such as muscle weakness, fatigue or memory lapses, might be attributed to other causes in error, Abou-Donia said.

“The take home message is to be safe and cautious when using insecticides,” said Abou-Donia. “Never use insect repellents on infants, and be wary of using them on children in general. Never combine insecticides with each other or use them with other medications. Even so simple a drug as an antihistamine could interact with DEET to cause toxic side effects. Don’t spray your yard for bugs and then take medications. Until we have more data on potential interactions in humans, safe is better than sorry.”

Fetal Deaths Linked to Living Close to Agricultural Pesticide Use
During Weeks 3-8 of Pregnancy

SOURCE: Epidemiology, 12(2), March 2001

Approximately 19,000 fetal deaths (stillborn) occur each year in the United States. The causes of these deaths remains unclear. Researchers from the University of North Carolina and the National Cancer Institute (NCI) worked together in this study of over 600 children to determine what part local pesticide use plays in increasing the risk of having a late fetal death after 5 months of pregnancy. Using maps and records of pesticide use, the researchers divided mothers into categories according to how close they lived to pesticide applications. If they lived within 1 mile of an agricultural pesticide application that occurred between weeks 3-8 of gestation they were considered as “exposed.” Weeks 3-8 during pregnancy were selected since this is the critical period in which formation of organs and limbs are occurring. Results of this study showed there was approximately 2-fold greater risk of having a stillbirth if the mother lived within 1 mile from an agricultural area which used organophosphate – pyrethroid – carbamate – or chlorinated pesticides. Primary defects which contributed to the death of the child were urinary system and multiple congenital anomalies.

CHEM-TOX COMMENT: This research is particularly important because it is the first to determine risk if limiting exposure to the 3-8 week gestational period, thereby demonstrating true risk to pregnant mothers in schools, homes, offices and neighborhood mosquito control projects. Other studies would have diluted results since they have been done on a trimester basis. Also of great concern is the increased risk stated here for having a stillborn child after exposure to pyrethroid pesticides. Pyrethroid based pesticides are the main pesticide used for mosquito control truck applications and should therefore, raise concerns regarding exposure to pregnant women living in mosquito spray areas.

This is not the first study to find a link between pesticides and fetal defects – another study reported in Epidemiology, 10:60, 1999, found pregnant mothers had a 70% increased risk for congenital defects if home pesticides were used or if living within a quarter-mile of an agricultural crop during the month before conception and the first trimester of pregnancy.

Erin M. Bell
Irva Hertz-Picciotto
James J. Beaumont
Department of Epidemiology, School of Public Health, University of North Carolina
National Cancer Institute, Bethesda, Maryland

Neuroblastoma Linked to Homes Treated with Pesticides

SOURCE: Epidemiology: 12(1):20-26, January, 2001

One of the largest studies to date has found that pesticide use around the home can more than double the chance of a child developing neuroblastoma.

Neuroblastoma accounts for approximately 10% of all childhood tumors. There are 550 new cases in the United States each year, with an annual incidence rate of 9.2 cases per million children under 15 years of age. This works out to approximately 1 per 100,000 children under age 15 on a national level. (These rates were reported in the book “Principles and Practice of Pediatric Oncology, Lippincott-Raven, 1997). It is a very serious cancer as approximately 60% of children over age 1 who develop neuroblastoma do not live 3 years even when receiving treatments of radiation and chemotherapy. Children under age 1 have a more positive prognosis. As statistics show that neuroblastoma rates have increased over the past 50 years, it is reasonable to assume environmental factors may be involved.

One of the largest collaborative efforts among 7 Universities and medical facilities worked together to determine what extent pesticide use in the home could increase child neuroblastoma rates. 390 neuroblastoma children and 460 non-cancer controls were included in the study. Investigators questioned both parents regarding use of pesticides in and around the home.

Results showed that using pesticides in and around the home resulted in a 60% increased likelihood of children developing the disease (Odds Ratio=1.6). Looking at pesticide use for the lawn and garden only resulted in an increased risk of 120% (Odds Ratio=2.2) when the mother had applied pesticides in the yard and 50% higher (Odds Ratio=1.5) when the father had applied pesticides in the yard. (Chem-Tox Note: Outdoor pesticides are much different from indoor pesticides as they include fungicides and herbicides some of which have been reported to contain dioxin).

Julie L. Daniels, Andrew F. Olshan, Kay Teschke, Irva Hertz-Picciotto, Dave A. Savitz, Julie Blatt, Melissa L. Bondy, Joseph P. Neglia, Brad H. Pollock, Susan L. Cohn, A. Thomas Look, Robert C. Seeger, Robert P. Castleberry
Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, University of British Columbia, University of Texas, University of Minnesota, University of Florida, Northwestern University, Department of Experimental Oncology, St. Jude Children’s Research Hospital and University of Alabama

Pesticide Exposure Increases Miscarriage Risk

SOURCE: Epidemiology, March 2001

Living close to areas where agricultural pesticides are applied may increase the risk of fetal death from birth defects according to research conducted at the University of North Carolina at Chapel Hill. The study, which involved almost 700 women in 10 California counties, showed an increased risk of death among developing babies. Mothers who lived near crops where certain pesticides were sprayed faced a 40 to 120 percent increase in risk of miscarriage due to birth defects.

“Our study showed a consistent pattern with respect to timing of exposure,” said Dr. Erin Bell, who earned her doctorate with the research at the University of North Carolina (UNC) School of Public Health. “The largest risks for fetal death due to birth defects were from pesticide exposure during the third week to the eighth week of pregnancy.”

“The risks appeared to be strongest among pregnant women who lived in the same square mile where pesticides were used,” she said.

“This is the first study to our knowledge of pesticides and pregnancy in which exposures were in close proximity to the subjects and the verification of pesticide use was objective, not relying on people’s memories of what they might have been exposed to,” Hertz-Picciotto said.

About 19,000 fetal deaths occur in the United States each year, and the causes remain a significant public health problem, Bell said. Among known risk factors are smoking, advanced age among pregnant women and previous history of fetal deaths.

Erin Bell (Ph.D.)
University of North Carolina
School of Public Health

Indoor Pesticide Use Increases Child Cancer Rates

SOURCE: CANCER:89:11, 2000
(An International Publication of the American Cancer Society)

Children who have been exposed to household insecticides and professional extermination methods within the home are three to seven times more likely to develop non-Hodgkin lymphoma (NHL) compared with children who have not been exposed to pesticides. These are the results of a study published in the December 1, 2000 issue of the journal CANCER, an international publication of the American Cancer Society. The study indicated that a child’s risk of developing NHL was similar for both maternal exposure to pesticides during pregnancy (in utero) and direct (postnatal) exposure to pesticides. Significant variations in risk were associated with various NHL morphologies. For instance, the use of household insecticides increased the risk of lymphoblastic lymphoma by 12.5 times. The term “pesticides” refers to a group of chemicals that have in common their ability to kill insects, plants, mammals (particularly rodents), or fungi.

“A limited number of these compounds may be capable of inducing lymphoma, particularly when used around the home,” comments chief researcher Jonathan D. Buckley, M.B.B.S., Ph.D., from the Department of Preventative Medicine at the University of Southern California in Los Angeles. Lymphoma, the third most common childhood malignancy, occurs at a rate of 21.7 per million in children age < 15 years. Approximately 60% of these cases are NHL. In the current study, the Children's Cancer Group evaluated the correlation between home pesticide use or occupational exposure to pesticides and the incidence of NHL in a pediatric study sample.

The study included children and adolescents age < 20 years who were diagnosed with NHL between February 1986 and June 1990. Tumors were classified according to cell type (predominantly B-cell or T-cell). Telephone interviews with the participants' mothers included questions regarding occupational and home exposure to pesticides around the time of pregnancy and direct exposure of the child to pesticides. From a total of 268 NHL pediatric cases examined, 49 of the patients had lymphomatous leukemia, whereas the other 218 patients were diagnosed with various NHL morphologies, including lymphoblastic subtype (38%), Burkitt lymphoma (28%), undifferentiated (non-Burkitt) lymphoma (12%), and large-cell NHL (19%). Frequency of household insecticide use by the mothers around the time of the pregnancy (in utero) was associated with a 2.62-fold greater risk of NHL for limited applications (1-2 days per week), compared with a 7.33-fold greater risk for regular use (on most days). Professional home extermination was related to a 3-fold greater risk for developing NHL. Direct (postnatal) exposure of the child to pesticides was associated with a 2.4-fold greater risk, whereas occupational exposure and the use of pesticide sprays in the garden demonstrated an increased risk, although not statistically significant. When the researchers focused their analysis on the association between different types of pesticide exposure and the development of different NHL morphologies, they observed the risk for developing lymphoblastic lymphoma was 12.5 times greater after a child's exposure to household insecticide use. The risk of developing Burkitt lymphoma was observed to be 9.6 times greater after occupational exposure to pesticides. The risk for developing large cell lymphoma or Burkitt lymphoma was 6.7 and 8.0 times higher, respectively, after professional insect extermination. The authors note that the most statistically significant correlation between exposure to pesticides and the risk for developing NHL were observed for those children who were directly exposed to pesticides. The risk for developing lymphoblastic subtype lymphoma and large cell non-Hodgkin's lymphoma was 10.9 times and 6.5 times greater, respectively, for these children compared with children who have not been exposed to pesticides. The researchers also noted a 7.1 times greater risk for Burkitt lymphoma among these children. Overall elevations in the risk associated with pesticide exposure were present for both the younger (age 6 years) study participants.

Jonathan D Buckley, M.B.B.S. Ph.D.
Anna T. Meadows, M.D.
Marshall E. Kadin, M.D.
Michelle M. Le Beau, Ph.D.
Stuart Siegel, M.D.
Leslie L. Robinson, Ph.D.

Evidence Suggests Child Brain Development Harm During Pregnancy from Common Pesticide Chlorpyrifos (Dursban)

SOURCE: Toxicology and Applied Pharmacology 134, 53-62, 1995

Chem-Tox Comment: During the past 30 years there has been an alarming rise in the rates of children exhibiting various forms of subtle brain damage including – learning disabilities – autism – and attention deficit disorder. Understanding that the human brain begins growing at over 4,000 cells per second beginning in the 4th week of pregnancy demonstrates the importance of having a non-contaminated biological environment in order to attain maximum brain growth quality. The following research was conducted at the Department of Pharmacology, Duke University Medical Center, Durham, North Carolina. The first paragraph below is taken from the abstract of the original research.

“Researchers administered chlorpyrifos to neonatal rats in apparently subtoxic doses that caused no mortality and little or no weight deficits and examined developing brain regions (cerebellum, forebrain, brainstem) for signs of interference with cell development. One day old rats given 2 mg/kg of chlorpyrifos showed significant inhibition of DNA synthesis in all brain regions within 4 hours of treatment; equivalent results were obtained when a small dose (0.6 ug) was introduced directly into the brain via intracisternal injection, indicating that the actions were not secondary to systemic toxicity. Inhibition of DNA synthesis was also seen at 8 days of age; however, at this point, there was regional selectivity, with sparing of the cerebellum… These results indicate that low doses of chlorpyrifos target the developing brain during the critical period in which cell division is occurring, effects which may produce eventual cellular, synaptic, and behavioral aberrations after repeated or prolonged subtoxic exposures.”

In summary the researchers stated,

“In extrapolating findings in the developing rat brain to man, it is important to note that the first 10 days of postnatal life in the rat represent stages of neurodevelopment corresponding to the last trimester of gestation in man; thus, our finding of a much greater sensitivity to chlorpyrifos in the neonate, in terms of both systemic toxicity and targeting of DNA and protein synthesis within the brain, emphasize the need for caution in assigning safety standards. Further study of acute and chronic exposure to chlorpyrifos should be undertaken to evaluate the cellular, synaptic, and behavioral consequences of low-level exposures.

K. D. Whitney, F. J. Seidler, T.A. Slotin
Department of Pharmacology
Duke University Medical Center
Durham, North Carolina

Common Weed Killer (Roundup) Shows Evidence of
Environmental and Health Problems

SOURCE: Organic Gardening, July, 2000
See the complete article at the “Organic Gardening” web site

Thousands and thousands of acres in the United States are being sprayed annually with nearly 50 million pounds of Roundup, a broad-spectrum herbicide designed to kill any plant it hits, unless the plant has been genetically altered to tolerate the chemical. Roundup has accounted for half of Monsanto’s corporate profits in recent years. Now the company has expanded its Roundup market by genetically engineering “Roundup Ready” soybeans, corn, and other crops. Monsanto’s advertising campaigns have convinced many people that Roundup is safe, but the facts simply do not support that conclusion. Independent scientific studies have shown that Roundup is toxic to earthworms, beneficial insects, birds and mammals. Plus it destroys the vegetation on which they depend for food and shelter. And although Monsanto claims that Roundup breaks down into harmless substances, it has been found to be extremely persistent, with residue absorbed by subsequent crops over a year after application. Roundup show adverse effects in all standard categories of toxicological testing, including medium-term toxicity, long-term toxicity, genetic damage, effects on reproduction, and carcinogenicity. Here is some of the research that demonstrates the ways that Roundup’s active ingredient, glyphosate, adversely affects plants and animals:

In a study conducted by T.B. Moorman and colleagues at the USDA Southern Weed Science Laboratory in Stoneville, Mississippi, glyphosate reduced soybeans’ and clover’s ability to fix nitrogen. A study conducted by G.S. Johal and J.E. Rahe of the Center for Pest Management at Simon Frase University in Burnaby, British Columbia, found that glyphosate made bean plants more susceptible to disease. At Dalhousie University in Halifax, Nova Scotia, D. Estok and colleagues found that glyphosate reduces the growth of beneficial soil-dwelling mycorrhizal fungi. Moving up to mammals, sperm production in rabbits was diminished by 50 percent when they were exposed to glyphosate, in research conducted by M.I. Youset and colleagues at the University of Alexandria in Egypt and the University of Tromso in Norway. Brand-new evidence suggests that Roundup may cause cancer. The study, published in Environmental and Molecular Mutagenesis (vol. 31 pp. 55-59, 1998), found that an unidentified chemical in Roundup caused genetic damage in the livers and kidneys of mice exposed to the herbicide. The researchers believe additional experiments are needed to determine which chemical in the Roundup mixture is causing the damage. They point out that this will be very difficult because “the precise composition of the mixture…is not available due to protection by patent regulation.” In other words, Monsanto doesn’t have to reveal to the public exactly what chemicals are in Roundup. In California, where pesticide-related illness must be reported, Roundup’s active ingredient (glyphosate) was the third most commonly reported cause of pesticide illness among agricultural workers, and the most common cause of pesticide illness in landscape workers. According to two New Zealand toxicologists, the symptoms experienced by workers exposed to Roundup included eye and skin irritation, headaches, nausea and heart palpitations.

Parkinson’s Disease Mortality Higher in Agricultural Areas

SOURCE: Biochem Soc Trans, 28(2):81-4, 2000

BACKGROUND: In the last two decades reports from different countries emerged associating pesticide and herbicide use with Parkinson’s disease (PD). California growers use approximately 250 million pounds of pesticides annually, about a quarter of all pesticides used in the US. METHODS: We employed a proportional odds mortality design to compare all cases of PD recorded as underlying (1984-1994) or associated causes (1984-1993) of death occurring in California with all deaths from ischaemic heart disease (ICD-9 410-414) during the same period. Based on pesticide use report data we classified California counties into several pesticide use categories. Agricultural census data allowed us to create measures of percentage of land per county treated with pesticides. Employing logistic regression models we estimated the effect of pesticide use controlling for age, gender, race, birthplace, year of deaths, and education. RESULTS: Mortality from PD as the underlying cause of death was higher in agricultural pesticide-use counties than in non-use counties. A dose response was observed for insecticide use per county land treated when using 1982 agricultural census data, but not for amounts of restricted pesticides used or length of residency in a country prior to death. CONCLUSIONS: Our data show an increased PD mortality in California counties using agricultural pesticides. Unless all of our measures of county pesticide use are surrogates for other risk factors more prevalent in pesticide use counties, it seems important to target this prevalent exposure in rural California in future studies that use improved case finding mechanisms and collect pesticide exposure data for individuals.

Ritz B, Yu F
Department of Epidemiology
Center for Occupational and Environmental Health
School of Public Health, UCLA, Los Angeles, CA 90095-1772, USA.

Parkinson’s Disease Linked to Pesticide Combination

SOURCE: Journal of Neuroscience, December 15, 2000

Article below was reported by Maggie Fox
Health Correspondent for the Reutger’s News Service
To see the original article on Yahoo – Click Here

A combination of two commonly used agricultural pesticides, when injected into mice, causes the same pattern of brain damage seen in Parkinson’s disease, researchers said on Thursday.

Mice given the herbicide paraquat and the fungicide maneb showed clear signs of Parkinson’s, a progressive and incurable brain illness, Deborah Cory-Slechta and colleagues at the University of Rochester School of Medicine and Dentistry said.

But neither chemical alone works to create the distinctive pattern of brain damage.

The findings add to a growing body of evidence that exposure to chemicals such as pesticides may at least contribute to the brain damage seen in Parkinson’s.

“No one has looked at the effects of studying together some of these compounds that, taken by themselves, have little effect,” Cory-Slechta said in a statement.

“This has enormous implications.”

Dr. Eric Richfield, a neurologist who worked on the study, said it may mean that no one will ever be able to predict who is at risk of Parkinson’s based on exposure to chemicals.

“There is no way to add up how much of any chemical someone is exposed to,”
Richfield said in a telephone interview.

“There are so many agents and everybody is a little different. Person A may
have no reaction to a particular compound. How do you test for interactions
between two agents?”

Parkinson’s disease, which affects an estimated 500,000 people in the United States alone, is a progressive and incurable disease that involves the destruction of brain cells that produce dopamine, an important message-carrying chemical linked with movement.

Patients start out with tremors and can become paralyzed and die. There is no cure and treatments can delay the disease for a while but eventually stop working.

Perhaps the best-known patient is Pope John Paul (news – web sites) II, whose doctor admitted on Wednesday the pontiff had the disease. Actor Michael J. Fox also has Parkinson’s, and boxer Muhammad Ali has symptoms of the disease.

Researchers suspect that a combinations of genetic vulnerability and exposure to something in the environment may be responsible. One major suspect is organophosphate pesticides, which are known to affect the nervous system.

Writing in the Dec. 15 issue of the Journal of Neuroscience, Cory-Slechta’s team said they studied the effects of a mixture of paraquat and maneb. Both are used on millions of acres of crops such as potatoes, tomatoes, lettuce, corn, soybeans, cotton and fruit.

Mice injected with one or the other alone showed no ill effects, but when the combination was given they showed clear patterns of brain damage.

The mice moved around much less than normal and had lower levels of an enzyme known as tyrosine hydroxylase that is used as a measure of the health of the dopamine system.

The mice had nearly four times as many “reactive astrocytes,” brain cells that suggest they are damaged, they had about 15 percent fewer dopamine neurons, and they produced 15 percent less dopamine than normal mice.

Richfield says his team now plans to test mice genetically engineered to be susceptible to the Parkinson’s-like damage, and they may test whether giving the chemicals orally has the same effect.

He thinks one chemical may act to make the other more damaging. “It could have to do with the uptake of paraquat,” he said.

“If given systemically (as in an injection), very little gets into the brain. It is possible the maneb compound is promoting transport into the brain, therefore giving the mice a greater dosage to the brain. That is something we are planning to experimentally determine.”

University of Rochester School of Medicine

Prostate Cancer Risk Doubles in Pesticide Applicators

SOURCE: Occupational Environmental Medicine, 56(1):14-21, 1999

OBJECTIVES: Although the primary hazard to humans associated with pesticide exposure is acute poisoning, there has been considerable concern surrounding the possibility of cancer and other chronic health effects in humans. Given the huge volume of pesticides now used throughout the world, as well as environmental and food residue contamination leading to chronic low level exposure, the study of possible chronic human health effects is important.
METHODS: This was a retrospective cohort study, analysed by general standardised mortality ratio (SMR) of licensed pesticide applicators in Florida compared with the general population of Florida. A cohort of 33,658 (10% female) licensed pesticide applicators assembled through extensive data linkages yielded 1874 deaths with 320,250 person-years from 1 January 1975 to 31 December 1993.
RESULTS: Among male applicators, prostate cancer mortality (SMR 2.38 (95% confidence interval (95% CI) 1.83 to 3.04) was significantly increased. No cases of soft tissue sarcoma were confirmed in this cohort, and non-Hodgkin’s lymphoma was not increased. The number of female applicators was small, as were the numbers of deaths. Mortality from cervical cancer and breast cancer was not increased. Additional subcohort and exposure analyses were performed.

Fleming LE, Bean JA, Rudolph M, Hamilton K
Mortality in a cohort of licensed pesticide applicators in Florida.
Department of Epidemiology and Public Health
University of Miami School of Medicine, FL 33101, USA.

Living Near Agriculture Increases Risk of Brain Cancer

SOURCE: American Journal of Public Health, 86(9): 1289-96, 1996

Living closer than 2600 feet to an agriculture area has been found to increase the risk for developing brain cancer. This 1996 research project studied cancer rates among over 600 people. Brain cancer overall showed a twofold increase risk for people living within the 2600 foot distance. An astounding 6.7 fold increased risk was found for the brain cancer type known as astrocytoma for people living within 2600 feet from an agriculture area. For more information on brain cancer and neuroblastoma see: brain cancer research summaries – neuroblastoma research summaries

Drs. A. Aschengrau, D. Ozonoff, P.Coogan, R. Vezina, T. Heeren
Department of Epidemiology and Biostatistics
Boston University School of Public Health

Golf Course Superintendents Face Higher Cancer Rates

SOURCE: American Journal of Industrial Medicine, 29(5):501-506, 1996

Working as a Golf Course Superintendent has been found to significantly increase the risk of dying of four cancer types including – brain cancer, lymphoma (non-Hodgkin’s lymphoma, NHL), prostate and large intestine cancer. A study was conducted of 686 deceased members of the Golf Course Superintendents Association of America from all U.S. states who died between 1970 and 1992. Brain cancer rates for the Superintendents was found to occur at over twice the national average, while non-Hodgkin’s lymphoma also occurred at over twice the national average. Prostate cancer occurred at nearly 3 times the national average and large intestinal cancer occurred at 1.75 times the national average. The researchers stated that a similar pattern of elevated NHL, brain and prostate cancer mortality along with excess deaths from diseases of the nervous system has been noted previously among other occupational groups exposed to pesticides.

Drs. Kross, B.C., Burneister, L.F., Ogilvie, L.K., Fuortes, L.J.,
Department of Preventive Medicine Health, University of Iowa

Home Pesticides Increase Risk of Leukemia in Children

SOURCE: Journal of the National Cancer Institute, July 1987

Children who live in homes where indoor or outdoor pesticides are used face a far greater chance of developing leukemia (leukemia is a cancer of the blood). The study, published in July’s 1987 issue of the Journal of the National Cancer Institute, studied 123 Los Angeles children with leukemia and 123 children without the malignancy. The results showed the children living in the pesticide treated homes had nearly a 4 times greater risk of developing the disease. If the children lived in homes where pesticides were used in the garden as well, the risk of developing leukemia was 6.5 times greater. All of the children in the study were 10 years of age or younger.

Dr. John Peters
University of Southern California

Pesticide Vapors Present – Weeks – Months – Years after Application

In research to determine the amount of indoor air contamination following routine indoor application of pesticides, it was found the levels of the pesticide Dursban drop to only one-sixth of its original 1 hour level four days after application. The research was conducted by Dow Chemical (1). The no-odor pesticide Ficam was reported to have an air half-life of approximately 10 days (2). Of significant concern is the discovery that the pesticide soil drench procedure (a procedure in which approximately 200 gallons of pesticides are saturated into the soil just prior to the pouring of the concrete foundation in new home construction) is finding its way into the indoor air for literally years and years after application. It was originally thought that the concrete foundation provided a solid barrier to the poison. However, air testing technology has shown this is not the case (3). Just as radon finds its way into a home, entering from the soil, the pesticide vapors do also moving from the high pressure underneath the home and into the lower pressure inside the home. It enters through cracks in foundation, around plumbing fixtures, etc. This provides strong evidence that this procedure should be eliminated immediately and alternative methods be used. Alternative methods include using only concrete and metal framing – using non-volatile Sodium Borate treatment on the wood framing before installing drywall – using pesticide spikes embedded in the soil around the perimeter of the home (this is still a chemical pesticide and therefore is not a first option but may satisfy the Lenders). Other research at University of Florida has shown that larger “sand” granules do not allow termites to build their nests. Unfortunately, the pesticide industry has worked its way solidly into new home construction practices and therefore takes a little effort on the homeowner’s part to stop the pesticide soil drench procedure – (It can be done however, as it is not a law, but rather a recommended procedure in the Southern Building Code and one the lenders like to see done. Go talk to your lender personally and tell them about the alternatives and threaten to take your business somewhere else.). The bottom line is these chemicals do enter the home and they do accelerate the onset of health problems (as seen in the research on this page) including aging of the immune and nervous system and therefore should not be applied underneath the home.
We have also made a table summary on the the Indoor Air Pesticide Contamination Research.

Pest Control Technology Magazine, pg. 44, August 1987
Peter Drury (M.S.) Pesticide Telecommunication Network, Dallas, Texas 1-800-858-7378 (
This organization is partially funded by the EPA)
Indoor Air Pesticide Summary – click to see summary and references

Immune System Problems Appear
After Indoor Dursban Exposure

SOURCE: Archives of Environmental Health, 48(2):89-93, March/April 1993

The pesticide Dursban (also called chlorpyrifos), commonly used in indoor and lawn pest control, is now showing evidence of causing immune system disorders in people. In a study by the Department of Health Science at California State University, 12 individuals, which included a teacher, six housewives, a retail owner, a musician and an engineer, were studied for 1 to 4.5 years after they became ill when their home or place of employment was treated with the pesticide. The researchers were investigating for any abnormalities in immune system function. Immediately following each patient’s exposure to the pesticide, common complaints included an initial flu-like illness followed by chronic complaints of fatigue, headaches, dizziness, loss of memory, upper and lower respiratory symptoms, joint and muscle pain and gastrointestinal disturbances. The subjects were found to have an elevated number of CD26 cells and a higher rate of autoimmune problems, compared with two other control groups. (Autoimmune disorders occur when the person’s own immune system mistakenly makes antibodies which attack their own body.) Autoantibodies were found toward smooth muscle, parietal cell, brush border, thyroid gland, myelin, and ANA. 83% of the pesticide exposed people were found to have autoantibodies in their blood, in comparison to only 15% for non-exposed control group. 50% of the pesticide exposed people were also found to have two or more autoantibodies in comparison to only 4% for the non-exposed group.

In conclusion the researchers stated,

“the presence of several different types of autoantibodies, e.g., antimyelin, antismooth muscle, anti brush boarder, and antimicrosomal, indicates that generalized tissue injury has occurred. Moreover, these identical observations have been made in additional chlorpyrifos patients (research in progress). Thus, chlorpyrifos (Dursban), as used in pesticide spray, should be examined more closely as a probable immunotoxin.”

Jack D. Thrasher Ph.D., Roberta Madison, Alan Broughton
Department of Health Science, California State University

Flea Home Treatments Cause High Air Pesticide Levels

SOURCE: American Journal of Public Health, 80(6):689-693, 1990

Applying common flea pesticide treatments to carpets results in illegally high air pesticide levels in homes which lasts for over 24 hours after application. This was the conclusion of research conducted by Dr. Richard A. Fenske, Assistant Professor at Rutgers University. Tests were conducted by applying the common pesticide Chlorpyrifos (Dursban) for flea treatment by a licensed Pest Control Applicator to three rooms of an unoccupied apartment in New Jersey in June, 1987. Air sampling equipment was installed above the floor at the levels expected for an adult sitting in a chair and that of an infant. After application, samples were taken at 30 minutes, 1 hour, 1.5 hours, 3 hours, 5 hours, 7 hours and 24 hours. Results showed that at 5 hours post application, indoor air levels of the pesticide was nearly twice above the legal limit in homes with ventilation (an open window) and over 6 times above the legal limit at 7 hours where windows were closed. Levels at the infant breathing zone were nearly 10 times above the legal limit at 7 hours and over 3 times the legal limit even after 24 hours. These results show it is incorrect when Pesticide Applicators state it is safe to return home several hours after application. In fact, levels at 7 hours were 3-5 times higher than the 1.5 hour level. In conclusion the researchers stated,

“Despite uncertainties in exposure/absorption estimates and toxicological interpretation, the dose values derived in this study raise a public health concern. Broadcast applications and possibly total release aerosol/fogging applications of acutely toxic insecticides may result in dermal and respiratory exposures sufficient to cause measurable toxicological responses in infants.

Richard A. Fenske, Ph.D., MPH
Kathleen G. Black, MPH
Ken P. Elkner, MS
Department of Environmental Sciences
Graduate Program in Public Health, Rutgers University

Pesticide Inhalation Associated with Brain and Lung Cancer
SOURCE: Journal of the National Cancer Institute, 71(1), July 1983

A study of 3,827 Florida pesticide applicators employed for 20 or more years found they had nearly 3 times the risk for developing lung cancer. The same study also showed the pesticide applicators had twice the risk for brain cancer. There was not any increased cancer risk when applicators were studied for only 5 years implying it takes over 5 years to accumulate enough damage to the genetic structure to develop the cancers.

Brain Damage Linked to Lawn Pesticides

SOURCE: 3 references listed below

The pesticide MCPA, used as an ingredient is some lawn pesticides, has been found to damage a part of the brain known as the blood brain barrier (1). The blood brain barrier is the brain’s primary defense system which works to keep toxic substances out of the brain cells and is literally protecting all of us from developing immediate neurological illness. The blood brain barrier has been found to be defective more often in patients with Alzheimers and some psychiatric disorders (2). In fact, the lack of functioning of the blood brain barrier in the human infant has been reported on many occasions as being the reason why an infant is being found to develop brain damage after exposure to common chemicals while an adult with a mature blood brain barrier does not. Unfortunately, EPA neurotoxicologist Dr. Bill Sette stated EPA does not yet require chemical companies to test any of their pesticides for causing blood brain barrier damage. Another study of 56 men exposed to organophosphate pesticides detected memory problems and difficulty in maintaining alertness and focusing attention (3). Each of these studies will be listed here in greater detail shortly as our web site completes development. As the understanding of blood brain barrier function is of critical importance to understanding why one individual can receive more damage to his/her nervous system than someone else, we will also include a blood brain barrier site with the address

1. Toxicology and Applied Pharmacology, 65:23, 1982
2. British Journal of Psychiatry, 141:273, 1982
3. Annual Reviews in Public Health, 7:461, 1986

Common Birth Defects Increase After Pesticide Exposure –
Hydrocephaly & Cleft Pallet

SOURCE: Bulletin of Environmental Contamination Toxicology, 54:363-369, 1995

Of the many different types of pesticides (which include insecticides, herbicides and fungicides), it was found that the common fungicide “cyproconazole” caused serious defects when administered to test animals. This chemical is reported to be widely used in agriculture and is a member of the family of fungicides known as triazole fungicides. It’s closely related family members include the fungicides triadimefon, triadimenol, bitertanol, flusilazole, 1,2,4-triazole, and propiconazole. Each of these pesticides were reported in this article as being capable of causing birth defects in test animals when administered at doses as low as 30 mg/kg. These chemicals are far more toxic than even standard insecticides. The “No Observable Effect Level” (which means the maximum amount of the chemical that test animals can be exposed to without seeing any adverse effects) is reported to be only 2 mg/kg for flusilazole.

The study on the effects of cyproconazole (lets call it CPZ for simplicity) was headed by Dr. K. Machera, at the Laboratory of Pesticide Toxicology in Athens, Greece. Dr. Machera exposed 10 pregnant animals to different levels of CPZ ranging from 20-75 mg/kg from the 6th to the 16th day of pregnancy. On the 21st day of pregnancy the animals were sacrificed and the number of implantations, resorption sites and live and dead fetuses were recorded. The fetuses were weighed and examined for abnormalities.

Results showed the number of resorptions (similar to an early miscarriage) was over 8 times greater for those exposed to the 50 and 75 mg/kg doses. The fetal length was significantly smaller in doses from 50 mg/kg up. The fetal body weight was significantly less even at the lowest dose of 20 mg/kg.

Cleft Pallat did not occur in any of the 100 offspring not exposed to CPZ. However, cleft pallat did occur in 2% of posed to 20 mg/kg of CPZ, 20% of posed to 50 mg/kg of CPZ and 91% of posed to the highest 100 mg/kg dose.

The same trend was also seen with hydrocephalus – 0% for the animals not exposed to CPZ, 6% for posed to 20 mg/kg, 19% for posed to 50 mg/kg, 32% for posed to 75 mg/kg and 100% for the 12 posed to the 100 mg/kg level.

These studies demonstrate the definite potential for pesticides in the triazole family to increase the risk of lower birthweight, lower body length, as well as strongly increasing the risk of cleft palate and hydrocephalus. With results such as this in test animals, it would certainly be worthwhile to investigate the incidence of these conditions among people living in close proximity to agricultural areas. Dr. Machera did not state if these chemicals were used on residential lawns as an anti-fungal agent. Keep in mind that these studies were looking for physical defects and were not looking for neurological defects in offspring (which typically occur at much lower dosages).

Dr. K. Machera
Laboratory of Pesticide Toxicology
Benaki Phytopathological Institute, Athens, Greece

Common Lawn Pesticide Linked to Cancer

The lawn pesticides, mancozeb and chlorothalonil (used by commercial lawn spray companies as fungicides), have been classified by EPA as “probable” cancer causing chemicals in humans as they have been found to cause cancer in animals (1). Mancozeb has also been found to react with sunlight to form a new compound EPA categorizes as a “known” human carcinogen (1). The common lawn pesticide 2,4-D has been shown to increase the risk of lymphatic cancer in farmers six times the normal rate according to a National Cancer Institute report (2).

Newsweek, May 16, pg.77, 1988
Science News, September 13, 1986

The Pesticide Chlordane Contaminates Most U.S. Homes

SOURCE: Teratogenesis, Carcinogenesis, and Mutagenesis 7:527-540, 1987

There is approximately a 75% chance you are breathing the pesticide chlordane every minute you are inside your home if your home was built before March of 1988. Other studies have shown there is a 6-7% chance you are breathing dangerously high levels of the pesticide which are above the guidelines set by the National Academy of Sciences. This problem is occurring because over 30 million homes were treated with the chemical prior to its being banned by the EPA in March of 1988. The air chlordane studies were conducted by the U.S. Air Force and the New Jersey Department of Environmental Regulation. Over 1000 homes and apartments were tested in different parts of the nation. The researchers stated they expect the figures to remain the same throughout the country because of standardized application practices by the pest control companies. If you would like more detailed information on the chlordane problem and the health effects suspected for the millions of Americans living in chlordane treated homes – visit the chlordane web site by clicking this link.

Samuel S. Epstein and David Ozonoff
Chief Environmental Health Section
Boston University School of Public Health, Boston Massachusetts

Common Pesticides Cause Hyperactivity in Test Animals
After Single Dose

SOURCE: Neurotoxicology and Teratology, Vol. 11:45-50, 1989

Groups of test posed to different pesticides used in agriculture and lawn care showed over 50% more activity following a single exposure to the chemical. One of the main goals of this experiment, conducted by Dr. J. A. Mitchell and colleagues at the University of Michigan, was to investigate activity behavioral changes in test animals (male Swiss mice) following a single exposure to one of 4 different dosages of weed killers and fungicides. The chemicals used included Lasso (containing alachlor), Basalin (containing fluchloralin), Premiere (containing dinoseb) and the fungicide Maneb-80 (80% Maneb).. Test dosages ranged from a very low .4 mg/kg to 4 mg/kg to 40 mg/kg. Even the largest dose was still below the LD-50 for the animals (the amount needed to kill 50% of the test animals). According to the researchers, the herbicides and fungicides have received few reports investigating their toxicity while their yearly growth and production have grown far more than the insecticides.

The detection of hyperactivity was measured by placing the test animals in steel cages that were equipped with electronic motion detectors which used infrared beams to count specific movements by the animals. After the single chemical exposure, activity was measured for a 4 hour period. Results showed the weed killer “Lasso” did not show any effects at the very low .4 mg/kg level but did show over a 65% increase in activity at the low 4 mg/kg and a 75% increase at the higher 40 mg/kg level. The weed killer Dinoseb also showed no activity increases at the lowest .4 mg/kg dose but did show a 15% increase at the 4 mg/kg level and a 54% increase at the larger 40 mg/kg level. Other researchers have reported that activity provides a sensitive measure for evaluating the behavioral effects of the pyrethroid pesticide, deltamethrin, at doses that did not cause the characteristic neurotoxicological syndrome (6).

In conclusion the researchers stated,

“The results of this study suggest that at least some herbicides, in addition to pyrethrins, organophosphate, and carbamate pesticides, can produce behavioral manifestations following accidental exposure…The effects of the pesticides on activity also support the hypothesis that these agents may affect the central nervous system.”

Dr. J. A. Mitchell, S. F. Long
Dept. of Pharmacology, University of Mississippi
The Behavioral Effects of Pesticides in Male Mice

Chlordane Causes Neurological Disorders and A.D.D. Symptoms

SOURCE: Environmental Health Perspectives, 103:690-694, 1995

In 1987, over 250 adults and children were exposed to the pesticide chlordane when the wooden building surfaces and soil around their apartment complex was sprayed. Their exposure came from the vapors that entered into their home for the years after the chemical’s application. Levels inside the homes were reported above 0.5 mg/m3.

In June-September 1994, 216 adult occupants or former residents of the apartment complex were examined by researchers at the University of Southern California School of Medicine in Los Angeles. The 109 women and 97 men were given a battery of neurological tests to determine if the low levels of chlordane in their apartments was causing any harmful effects. The tests given are considered sensitive indicators of neurotoxicity. To determine if chlordane was in fact causing neurological problems, the test scores of the chlordane exposed adults were compared to the test scores of 94 women and 68 men from Houston, known not to have been exposed to chlordane.

Results of the testing showed many negative effects upon mental function from the low levels of air chlordane. Not only were test scores lower for reaction time, balance, and memory, but also worse scores were observed in the test checking for attention deficits (digit symbol) and all tests of mood scores including tension, depression, anger, vigor and fatigue.

Going beyond the neurological testing, both groups were also investigated for many common symptoms and illnesses. Those which were significantly more common in the chlordane exposed group included asthma, allergies, production of phlegm, chronic bronchitis by Medical Research Council criteria, and wheezing with and without shortness of breath. Headaches and indigestion were also more common among the chlordane exposed individuals.

In summary Dr. Kilburn and Thornton summarized their findings by stating,

“The exposure of our study group appears to be from indoor air, due to the outgassing of chlordane from the wooden surfaces of the apartment complex… Examination of subjects exposed in their homes to chlordane as compared to referent subjects showed significant, and we suggest important, impairment of both the neurophysiological and psychological functions including mood states. Accompanying these changes were significant differences in symptom frequency and in respiratory rheumatic and cardiovascular disease symptoms. The most notable changes were slowing of reaction time, balance dysfunction as revealed by increased sway speed, reduction in cognitive function, perceptual motor speed, and immediate and delayed verbal recall… The neurobehavioral impairments measured in this environmental epidemiological study were similar to those noted in patients exposed to chlordane at home. These impairments include probably irreversible dysfunction of the brain. Possible effects on trigeminal nerve-pons-facial nerve function were suggested for the first time. Confirmatory studies, including follow-up after removal from exposure, are urgently needed. Meanwhile, chlordane use should be prohibited worldwide.”

CHEM-TOX COMMENT: This study should generate heightened concern because of the large number of neurological and health effects seen at chlordane air levels of above 0.5m g/m3 (typical levels for most U.S. homes) and statements by researchers that developing children are harmed more by chemicals than adults. For more information on the chlordane problem and the health effects of living in a chlordane treated home – visit the chlordane web site by clicking this link.

Dr. Kaye H. Kilburn and John C. Thornton
Environmental Sciences Laboratory
University of Southern California School of Medicine, Los Angeles

Male Infertility After Pesticide Chlordane Exposure

SOURCE: Bulletin of Environmental Contamination Toxicology, 39:434-442, 1987

In the following study, researchers divided mice into three groups of ten mice each. Two groups were subjected to either a low or higher level of chlordane and the third group was used as a control group not exposed to any chlordane. After 30 days of daily exposure, the animals were sacrificed and the testicles were examined. The researchers stated that the chlordane exposed groups showed obvious changes to the part of the testicles where sperm development occurs (called the seminiferous tubules). Damaged tubules were present in 19% of the lower chlordane exposed animals – 31% of the higher chlordane exposed animals and only 3% in the animals not exposed to chlordane. There was also a reduction in the seminiferous tubule diameter in the higher chlordane exposed group. More details of this research can be seen at the infertility web site

Dr. K. J. Balash, M. A. Al-Omar, et al.
Biological Research Center, Scientific Research Council, Baghdad, Iraq

Pet Bladder Cancer Linked to Home Pesticide Use

SOURCE: Journal of Toxicology and Environmental Health; 28 (4). 1989. 407-414

A case-control study of household dogs was conducted to determine if exposure to sidestream cigarette smoke and chemicals in the home, use of topical insecticides, and obesity are associated with the occurrence of bladder cancer. Information was obtained by interview from owners of 59 dogs with transitional-cell carcinoma of the bladder and 71 age- and breed size-matched control dogs with other chronic diseases or neoplasms. Bladder cancer risk was unrelated to sidestream cigarette smoke and household chemical exposures. Risk was significantly increased by topical insecticide use. When dogs were given 1-2 topical pesticide applications per year, there was a 60% increased risk of bladder cancer. When animals were given more than 2 pesticide applications per year there was a 3.5 times increased risk for the animal developing bladder cancer (chitrend; p = .008). This risk was enhanced in overweight or obese dogs. Further studies of this canine model may facilitate identification of specific carcinogens present in insecticides commonly used on pet animals and in the environment.

Department of Pathobiology
Purdue University School of Veterinary Medicine, West Lafayette, Indiana 47907

Pet Bladder Cancer Linked to Lawn Pesticide Applications

SOURCE: Journal of the American Veterinary Medicine Association, April 15, 2004.
Below is a summary from Reuters News (April 24, 2004)

A study that links lawn chemicals to bladder cancer in Scottish terriers could help shed light on whether they cause cancer in some people, U.S. researchers said on Tuesday.

Purdue University researchers surveyed 83 owners of Scottish terriers whose pets had recently been diagnosed with bladder cancer for their report, published in the Journal of the American Veterinary Medicine Association.

“The risk … was found to be between four and seven times more likely in exposed animals,” said Larry Glickman, professor of epidemiology and environmental medicine in Purdue’s School of Veterinary Medicine.

“While we hope to determine which of the many chemicals in lawn treatments are responsible, we also hope the similarity between human and dog genomes will allow us to find the genetic predisposition toward this form of cancer found in both Scotties and certain people.”

Glickman and his colleagues earlier found that Scotties are about 20 times more likely to develop bladder cancer than other breeds.

“These dogs are more sensitive to some factors in their environment,” Glickman said in a statement. “As pets tend to spend a fair amount of time in contact with plants treated with herbicides and insecticides, we decided to find out whether lawn chemicals were having any effect on cancer frequency.”

The National Cancer Institute says about 38,000 men and 15,000 women are diagnosed with bladder cancer each year. Humans and animals often share genes that can predispose them to cancer.

“If such a gene exists in dogs, it’s likely that it exists in a similar location in the human genome,” Glickman said. “Finding the dog gene could save years in the search for it in humans and could also help us determine which kids need to stay away from lawn chemicals.”

Glickman’s team plans to survey children, as well as dogs, in households that have treated lawns and compare the chemicals in their urine samples with those from households with untreated lawns.

“It’s important to find out which lawn chemicals are being taken up by both children and animals,” he said.

Pesticides Blamed for Higher Cancer Rates

SOURCE: Winnipeg CBC News – June 7, 2004

WINNIPEG – Doctors at a weekend conference in Winnipeg say there is a disturbing trend when it comes to the rising rate of certain cancers. They say pesticides are to blame for the increase – especially in childhood cancers. Steve Rauh chairs the environment committee for the Social Planning Council of Winnipeg. He says 70 per cent of the toxins we are exposed to come from the foods we eat. He wants to see policy changes that would encourage organic farming. “Our department of agriculture does not provide the kind of support to organic farming that it ought to be providing,” he says. The Canadian Association of Physicians for the Environment has taken a strong position against municipalities using pesticides. It has also written papers on climate change.

Infertility Problems from Pesticide Exposure

SOURCE: Science: Thursday, June 2, 2005

Parents exposed to pesticides may be damaging their children’s chance of having their own children. The study, published in the journal Science, involved exposing rats to two common agricultural chemicals – the fungicide vinclozolin and the pesticide methoxychlorthat. Both are chemically related to natural hormones, and have been tentatively implicated in reproductive disorders in both animals and humans. When the rats gave birth, their male offspring tended to have low sperm counts and low fertility. None of that was a surprise. But what did surprise researchers was the fact that when these males did manage to reproduce, their offspring also had low sperm counts. And so did the generation after that – more than 90% of the males in each generation were affected.

If the same effect occurs in humans – a reasonable hypothesis – it could imply that keeping poisons out of the environment becomes even more important than previously realized. Michael K. Skinner, director of the University’s Center for Reproductive Biology, suggests that that the new findings on toxin damage being transmitted across generations could even help explain the dramatic rise in breast and prostate cancer in recent decades as partly due to the cumulative effect of various toxins over several generations.

Organ-Detoxing Protocal

Thanks to for this info-
Organs that participate in detoxifying the body are the liver, colon, kidneys, lungs, and skin. During times of stress and acute overload, cleansing procedures will help restore optimal function of these organs. In addition, before beginning any detoxification program it is imperative to be certain that these organs are functioning adequately. If anyone of them is not performing well, there will be blockages in the detoxification process that will result in increased symptoms.

Although they are not organs, the lymph system and blood participate in detoxification. In many people, they are overloaded and in need of cleansing, which will improve both their detoxification efficiency and the health of the person.

It is helpful to consult a healthcare practitioner before beginning an organ cleanse to be certain your body is ready for and can handle these procedures. It is particularly important that the kidneys are capable of processing the increased load they will have to excrete, and most people will need to do the kidney cleanse first.

Massage helps to cleanse the liver. While lying flat on your back, using your flat fingertips, gently massage the liver area with clockwise circular motions. If soreness persists or if there is marked tenderness, you should consult a qualified professional.

Liver flushes stimulate the elimination of stored toxic wastes from the body, increase bile flow, and improve liver function.
Mix fresh-squeezed orange, grapefruit, and lemon or lime juices to make 1 cup of liquid. The mixture should taste sour. Add 1 to 2 cloves of fresh garlic and a small amount of fresh ginger juice. (Grate the ginger on a vegetable grater and squeeze the fibers in a garlic press.) Stir in 1 Tbsp. of olive oil and drink.
Follow the liver flush mixture with the following tea:
1 part fennel
1 part fenugreek
1 part flax
1/4 part burdock
1/4 part licorice
Use 1 ounce of the herb mixture to 20 ounces of water and simmer for 20 minutes, then add 1 part peppermint. Steep for 10 more minutes.
For additional soothing properties, add 1/2 part marshmallow root (sliced and shredded) to the initial herb blend.

One of the best liver cleansers is a coffee enema. Coffee enemas were listed in folk literature for years as a method of helping the body rid itself of toxins and accumulated waste products. They were listed in the Merck Manual until 1977, when they were removed for lack of space. After pharmaceuticals became the main focus of medicine in the 1920s, coffee enemas were seldom used. In the past 10 to 15 years, however, their usefulness has again been recognized.
A coffee enema is a low-volume enema that stays in the sigmoid colon, the S-shaped last section of the large intestine. A special circulatory system exists between the sigmoid colon and the liver, called the enterohepatic circulation system. When the stool reaches the sigmoid colon, it is full of decomposed material and toxins. These toxins are sent directly to the liver for detoxification rather than being circulated throughout the body.
The caffeine in the coffee is the active ingredient in a coffee enema. Given rectally, it helps detoxify the liver and emulsifies fat. While coffee enemas do promote cleansing of the intestines as well as the liver and gallbladder, they are used primarily to clean the liver and gallbladder.
A coffee enema:
increases the peristaltic action of the intestines, and speeds up the emptying of the bowel.
makes the toxins accumulated in the bile ducts empty, allowing other toxins in the body to filter into the liver for detoxification.
increases the emptying speed of the liver ducts holding detoxified materials, speeding the detoxification process.
encourages the removal of gallstones in the bile.
stimulates the production of the enzyme glutathione-S-transferase, which makes the liver detoxification pathways function.
breaks down accumulated fat in the liver cells.
clears chemical overloads and chemical reactions.
helps the body cope with chemotherapy and side effects caused by toxic overload from destruction of cells.
Minerals and electrolytes are not washed out by coffee enemas. The important nutrients have already been absorbed higher in the bowel, long before the food residue reaches the sigmoid colon.
Unsulfured molasses is used in the coffee enema to aid with retention and increase detoxification efficiency.
Preparing the Enema
Bring 1 quart of tolerated water to a boil in the stainless-steel or glass pot. Add 2 flat Tbsp. of coffee and continue to boil for 5 minutes. Turn off the heat and leave the pan on the burner. Add 1 Tbsp. of unsulfured molasses. Cool to a tepid temperature that feels comfortable to the touch. Never use the coffee mixture hot or steaming.
Strain, then pour half the coffee mixture into the measuring cup, being careful not to let the coffee grounds go into the cup. Put the enema bag in the sink and clamp off the tubing.
Pour the coffee mixture into the enema bag, then release the clamp long enough to allow the liquid to run to the end of the enema tube. Hang the enema bag 24 to 30 inches above the floor. A doorknob makes a good hanger. Do not hang it any higher, or fluid will be forced too high into the intestine. Cover the area on which you are going to lie with old towels to prevent staining.
Taking the Enema
First half:
Lie down on the floor and gently insert the nozzle or catheter. If you need lubrication, use only food-grade vegetable oil, K- Y jelly, or vitamin E. Do not use Vaseline or other petroleum jelly products, which are toxic.
Release the clamp and let the coffee mixture flow slowly in. Clamp off the tubing as soon as there is any sensation of fullness.
If you can do so, retain the enema for 10 minutes. Do not force yourself to hold it if an uncomfortable feeling develops.
Clamp the tubing and remove the nozzle or catheter, and empty your bowel.
Second half:
After emptying the bowel, repeat the procedure with the remaining half of the coffee mixture. If you cannot hold half of the enema mixture, take three or four small enemas.
When the gallbladder’s bile duct empties, you will hear or feel a squirting under the right ribcage, or in that general area. Once you feel this, you should not take any more enemas that day.
If, after a week of daily enemas, you have not felt or heard the gallbladder release its bile, you may need to:
increase the strength of the coffee 1 tsp. per quart at a time, but do not exceed 2 Tbsp. per cup.
take slightly larger volume enemas with each half.
take three enemas of 2 cups each or less.
Coffee enemas can be used without the unsulfured molasses if tolerance is a problem. However, after taking the enemas for several weeks, you will probably be able to safely add it.
Most people do not feel “wired” or hyper as a result of coffee enemas. Should you feel this way, or if you have palpitations or irregular heartbeats after a coffee enema, reduce the amount of coffee by half for a few days to a week. Caffeine blood levels have been checked on people who felt they were “wired” after a coffee enema, and caffeine was not detectable in their blood.
Coffee enemas can be used as often as needed. The usual frequency for detoxification purposes is around three times per week. Some people may need to use them daily if their toxic load is high.

Castor oil packs are extremely beneficial in cleansing the liver. Several commercially prepared liver cleansing and support products are also available.
Before you start a gallbladder cleanse, your bowels must be clean. Take an herbal laxative such as cascara sagrada or senna for two to three days before your cleanse. Also take three to four capsules of hydrangea or hyssop twice a day for about a week before this cleanse to reduce any gallstones in size and number.

Use a juice fast for two days. Do not eat on these days. Drink pure, organic, preservative-free apple juice for two days.

As a rule, apple juice starts to work on the second day. You may find small stones and/or green mud in the fecal matter. The malic acid in the apple juice helps to break down stagnant bile.

A cleansing, warm water enema may be necessary during the cleanse to alleviate nausea created by ingesting a large amount of oil at one time. This flush may be repeated in two months.

Indications that a colon cleanse would be helpful include:

Constipation: Unless you have at least one bowel movement a day and can evacuate your bowels quickly, you may need a colon cleanse.
Body and breath odor: Any unpleasant body or breath odor, or a coated tongue, can be indicative of a high toxic accumulation in the colon.
Chronic health problems: Many problems such as acne, allergies, arthritis, fatigue, gas, migraine, and recurrent bladder and vaginal infections may be caused or aggravated by a toxic colon.
Colon cleansing is a controversial method of detoxification and cleansing. There seems to be no middle viewpoint; people are either very much in favor or violently opposed. Those who favor colon cleansing feel that the health of the body reflects the health of the colon. They further believe that colon cleansing, either with enemas or colonics, is necessary for good health.

Those opposed to colon cleansing feel that it is an invasive treatment and that there is no medical reason to irrigate the colon. Homeopaths feel this method causes the loss of vital body fluids. Opponents of colon cleansing believe that proper diet, along with sufficient water and exercise, should allow you to move your bowels regularly. When the bowels function well, their natural physiological action should keep them clean.

Any cleansing method should be approached with caution, as you determine the appropriateness of a particular treatment for you. Very allergic people should be especially careful. You will have to make your own decision based on your own research.

Fasting is sometimes advocated before a colon cleanse. During a fast, your eliminative organs begin to remove concentrated and old, hard wastes, although they will not be able to eliminate all the accumulated material.

Colon cleansing may be accomplished by administering an enema, which flushes the lower intestines. Substances used in enemas include water, coffee, herbal tea, mild soap solution, meat broth, chicken soup, wheat-grass juice, barley juice, chlorophyll, oils, or other nutritional substances. The frequency of enema use depends on the person’s philosophy and tolerance. Some people take enemas once a month for preventive health maintenance. Others take a series of enemas seasonally.
General Instructions
Fill an enema bag with warm distilled or other tolerated water, or other liquid. Warmth allows the intestines to relax and expand.
Hang the bag 24 to 30 inches above the floor. A doorknob makes a good hanger. Cover the area on which you are going to lie with old towels.
Lying on the floor, lie on your left side or assume a knee-chest position (face down, supporting your weight on your knees and upper chest) to help water go through the colon.
Always lubricate the end of the rectal nozzle with vitamin E, food-grade vegetable oil, or K-Y jelly. Do not use petroleum jelly, which is a toxin.
Insert the tube or nozzle just inside the rectum. For a French catheter, as water begins to flow, gently insert the tube further – but never force it. The maximum tube insertion is 3 to 6 inches.
At the first urge or cramp, remove the tube and allow elimination.
Follow the warm enema with a cool water enema to stimulate peristaltic action and to soak off more material. When the intestinal muscles contract, more encrusted debris breaks off and leaves the body.
Enemas for Specific Conditions
To stimulate the liver, kidneys, spleen, and pancreas: Add 1/2 tsp. cayenne to an enema bag of water. This enema will also help stop bleeding that sometimes occurs with tissue irritation during rapid elimination.
To help eliminate parasites and Candida: Blend 1 or 2 crushed garlic buds in 1 quart of tolerated water. Strain. Add enough tepid water to fill the enema bag. Repeat once a day for three days.
To clear allergic reactions: Use 60 grams (8 level Tbsp.) of buffered vitamin C per quart of tolerated water. Allow the enema to run in very slowly and retain the fluid as long as you can comfortably do so. Caution: Never use ascorbic acid in an enema, as it is irritating to the colon.
Some colon therapists advocate the use of high colonics, using specialized equipment to deliver the cleansing solution into the colon and to pump it out. This treatment cleans the entire colon.
Great care must be taken to clean the equipment between clients. If the equipment is not properly sterilized, parasites can be passed from one person to another.
A colon cleanse using a fibrous material, called psyllium, and clay can remove years of accumulated, caked-on material. Because it is taken orally and moves through the GI tract naturally, many people feel this is a safe, non-invasive method of cleansing the colon.
Psyllium attracts moisture into the bowel, which causes the psyllium to expand, filling the intestine. The clay absorbs toxins and helps carry them out of the colon. As it passes through the intestines, it drags out stored wastes. Do not exceed three colon cleanses per year, and wait at least two months between cleanses.

Preparing the Cleanse
Mix 1 Tbsp. of the liquid bentonite in the pint jar with 4 ounces of tolerated water. (If you cannot find a liquid bentonite solution, you may make your own by dissolving 2 ounces of bentonite clay in 1 quart of tolerated water. Shake well and allow to stand for 12 hours.) Then add 1 Tbsp. of psyllium husks. Cover and shake well.
Taking the Cleanse
Drink the mixture quickly after you shake it. The longer it stands, the more it will clump. Follow with 8 ounces of pure, tolerated water. Drink this mixture three times a day, between meals, for 3 to 4 days. Take no food 2 hours before or for 2 hours afterward. Drink at least eight 8-ounce glasses of water a day.
This mixture can be constipating for some people. Should you become constipated, take extra vitamin C and magnesium. Some people may also need to use a plain water enema, or the coffee enema.
Some people feel abdominal discomfort during the first day or two of the cleanse when the psyllium has expanded in the bowel. Many people pass particles of varying size and shape. Some report long casings that may be mucosal debris and dead cells from the intestinal lining.
Many people who have constipation do not exercise enough. Research tells us that our bowels will not move unless we move. Exercise helps keep abdominal muscles healthy and muscle tone optimal. Simple walking is very beneficial, but the following activities are particularly helpful to combat constipation:
hill climbing
climbing a ladder or stairs
rowing, with chest held high, and giving the trunk a strong backward movement
medicine ball bouncing, to give the trunk muscles vigorous action
chopping, digging, swinging, mowing
folk and square dancing
horseback riding
Fiber, sometimes called roughage or bulk, helps to relieve constipation. It absorbs water in the large intestine and makes stools larger, softer, and easier to pass. Food fiber is soluble and is best for your body. High-fiber foods include grains and bran, fresh fruits with skin on, dried fruits, raw vegetables, legumes, nuts, and seeds. Peeled, cooked, or pureed fruits and vegetables have less useful fiber than those eaten raw.
By increasing high-fiber foods in your diet, fiber supplementation is not usually necessary. If you need to take a fiber supplement, start with small amounts and increase your water intake. You may experience some cramping, diarrhea, or gas at first. Fiber supplements can lead to dehydration, and minerals will be lost with the water. They can also decrease the absorption of dietary protein.
Many people are constipated or have difficult bowel movements because they do not consume enough liquid. Liquids, particularly water, keep stools soft. When liquid intake is too low, stools become small and hard. Coffee, tea, and caffeinated soft drinks can deplete the body of water because caffeine acts a diuretic.
There is controversy over how much water you should drink ordinarily. Many physicians say six to eight glasses per day, but some homeopaths feel that this much water overworks the kidneys. Certainly you should always drink when you are thirsty, and the bulk of your fluid intake should be water. During detoxification procedures, it is important to drink extra water.
Commercial laxatives can make a constipation problem worse. They are physically addictive and their frequent use can lead to vitamin and mineral deficiencies. Laxatives can weaken the GI muscles and decrease the effectiveness of peristalsis. Over a period of time, bowel movements become difficult without a laxative.
There are more natural options that will not harm your body. Ground psyllium seeds are a concentrated source of fiber, which has laxative properties. Psyllium is available at health food stores.
If you take vitamin C to bowel tolerance levels every day, you will not be constipated. Even if you do not take these amounts, extra doses of vitamin C help relieve constipation.
Extra magnesium also relieves constipation. Magnesium is the active portion of Epsom salts and Milk of Magnesia. However, these laxatives are harsh to your body. Simply increasing your magnesium supplementation should clear constipation.
Taken orally, charcoal is an excellent cleanser for the gastrointestinal tract. Charcoal removes the odor from intestinal gas, and it also helps indigestion, peptic ulcers, or other forms of gastrointestinal distress. It is generally tolerated well orally, and the only reported side effects have been bowel irritation in extremely sensitive individuals with bowel inflammatory problems.
Charcoal should not be taken continuously for years. It can be used intermittently for long periods of time, and regularly for several months. Some people are concerned that charcoal might adsorb nutrients, although there are studies that show it does not. It adsorbs mineral acids, alkalis, and salts poorly; for this reason, it does not adsorb nutrients. Food and bile interfere with charcoal’s effectiveness, yet its adsorption capacity is still rapid. Charcoal works better in an acid than an alkaline medium.
Charcoal can be taken orally in the following ways:
Slurry: Charcoal stirred into water forms a slurry. The usual oral dose of charcoal is 1 Tbsp. of powder stirred into a glass of water, taken mid-morning or mid-afternoon.
Tablets and capsules: Intestinal gas and bloating can be treated with four capsules or eight tablets of charcoal taken three to four times per day, between meals. This treatment also helps with malodorous stools and bad breath originating both from the mouth and gastrointestinal tract.
Oral charcoal can prevent toxins from building up in the blood when the liver is not functioning well. The respiratory tract medication, Theophylline, has a narrow therapeutic range and overdoses are a common occurrence. People taking this drug should keep charcoal on hand to treat these overdoses.
end of Part 2—————————————————————————————————————————————————-
For the kidney to be healthy, infections must be cleared and any stones dissolved. A kidney cleanse must remove all irritating chemicals, metabolic waste, and crystal deposits. It must also replace damaged cells with new healthy tissues.

Drink eight to ten 8-ounce glasses of bottled or tolerated water every day during the cleanse. Make water your only beverage. Juices, caffeinated drinks, and sodas do not substitute for water.
After the cleanse, continue to drink eight 8-ounce glasses of water daily. Water helps detoxify the kidneys, as well as diluting the urine, preventing concentrations of the minerals and salts that can form stones.
Diet has a major influence on kidney health. Avoid acid-forming foods such as caffeine containing foods; salty, sugary, and fried foods; and soft drinks, which adversely affect the filtering ability of the kidneys. Also avoid mucus-forming foods, including all dairy products, heavy grains, starches, and fats. This will relieve irritation and inflammation and inhibit sediment formation.
Do not consume kidney irritants such as alcohol and excessive protein. The release of insulin following sugar consumption increases the level of calcium in the blood, which can contribute to the formation of kidney stones. Rhubarb and raw spinach must also be avoided, as they encourage the formation of stones.
Consumption of citric acid also helps prevent the formation of kidney stones. Drink the juice of a fresh lemon in a glass of warm water every morning, both during and after a kidney cleanse. Lemons inhibit kidney stone formation because of their citric acid content. Lemonade should not be substituted for plain lemon and water, because it usually contains a high level of sugar.
The prevention of kidney stones is an essential factor in the health of the kidney. Zinc is an important inhibitor of crystallization. Take 50 to 80 mg of a zinc supplement and balance with 2 to 3 mg of copper. Use these amounts routinely if you are prone to kidney stones.
A raw kidney glandular, which is a concentrated form of animal kidney, strengthens the kidneys. It should be prepared from a young, organically raised, free-range animal that has not been given hormones.
The herbs ginkgo biloba and goldenseal in extract form increase circulation to the kidneys and have antioxidant and anti-inflammatory properties. Apples are considered to be a healing herb for the kidney and serve as a purifier, cleanser, disinfectant, and toner.
The following herbal cleanse is recommended for cleansing and detoxifying; it also treats urinary tract infections.
Caution: People who have nephritis or who take diuretics frequently should not use this formula, since it acts as a diuretic. Avoid high-sodium foods while using this formula.
Combine equal amounts of the following herbs and put into capsules. Take 5 to 8 capsules per day:
Bearberry leaves
Buchu leaves
Corn silk
Gravel root
Juniper berries
Exercise daily. Sedentary people have a high level of calcium in their blood. Exercise forces the calcium into the bones, lessening the risk of kidney stones, as well as promoting the elimination of toxins through increased circulation and sweating.
Take saunas or hot baths to increase sweating, which causes the excretion of toxins and excess fluid through the skin, sparing the kidneys. Essential oils in the bath water will help relieve kidney stress. Use 8 to 10 drops of two of the following: cedar wood, chamomile, eucalyptus, geranium, lemon, juniper, or sandalwood.
Homeopathic remedies that support the kidney or a complex homeopathic remedy will assist a kidney cleanse.
If you have a chronic cough that brings up phlegm, a constant runny nose, bronchitis or wheezing, or severe sinusitis, a lung cleanse should be helpful for you. People who have problems with fluid retention may not be able to do this cleanse.

Drink 8 to 12 glasses of water, juices, herb teas, and broth daily. Avoid dairy and dairy products, which can cause congestion. Eat fresh fruits, high-chlorophyll vegetables, sea vegetables, and non-gluten grains such as millet or brown rice. These are alkalizing foods and should be eaten in a ratio of about 4 to 1 over acid-forming foods. Chlorophyll rich foods such as chlorella, spirulina, and barley green will enhance lung cleansing, in addition to increasing oxygenation and helping to clear respiratory infections. Pitted fruits such as apricots, peaches, and plums are “lung-friendly” foods because of their flavonoid content.
Antioxidants are particularly important for lung function. Be certain to include vitamins A, C, and E in your nutrients as well as selenium, cysteine, and CoQ10.
Take an anti-infective such as garlic, olive leaf extract, or colloidal silver if you have bronchitis or similar lung symptoms. Proteolytic enzymes taken between meals will reduce inflammation, and quercetin between meals has a powerful antihistamine effect.
Try one of the following teas to relieve congestion and inflammation.
1 part lance-leaf plantain
1 part lungwort
1 part mullein flowers
2 parts speedwell
Mix the herbs in the indicated proportions and steep 1 tsp. of the mixture in 1/2 cup boiling water. Sweeten with honey and sip 1 to 1 1/2 cups over the course of a day.
Mix hemp nettle, shave grass, witch grass in equal parts. Use 1 heaping tsp. of the mixture to 1/2 cup cold water. Bring to a boil for 1 minute, then steep for 1 minute and strain. Sweeten with a little honey, if desired. Sip 1 to 1 1/2 cups over the course of a day.
Be vigilant about your environment and avoid all forms of tobacco smoke. Try to avoid exposures to dust or dust mites, molds, pollens, terpenes, and chemicals.
Be particularly careful in your home and, if you are not already doing so, avoid cleaning compounds and toiletries that have a scent of any kind. Use an air cleaner and, if necessary, wear a charcoal filter mask at home and at work.
Breathing exercises are very helpful in lung detoxification, as is physical exercise. A brisk daily walk during which you breathe deeply will accelerate your cleanse.
A chest rub of essential oils or inhaling steam to which essential oils have been added will thin and stop excessive mucus production. Oregano, tea tree, and eucalyptus oils singly or in combination will help. For a chest rub, put 15 drops in 1 ounce of a base oil and rub on the chest. For steam inhalation, put 6 drops in 1 quart of hot water and breathe the fumes.
Homeopathic remedies that are supportive of the lungs are helpful in a cleanse.
end of part 3—————————————————————————————————————————————–
Proper diet can improve your skin and overall appearance. Eat fresh fruits and vegetables and eliminate sugar, fried foods, margarine, shortening, hydrogenated oils, and dairy products. Eat foods high in fiber to keep the colon clean, which will help keep the skin clean.
Eat zinc-rich foods such as egg yolks, fish, meat, liver, grains, beans, and pumpkin and sunflower seeds, as a low-zinc diet can cause skin flare-ups. Zinc has antibacterial properties and is also necessary to the oil producing glands of the skin.
Eliminate coffee and alcohol, as they affect circulation to the skin. Also avoid processed foods, which are high in sugar, salt, and fat. Saturated fats promote inflammation.
As with the other organ cleanses, it is important to drink 8 to 10 glasses of tolerated water to flush toxins through the kidneys. This helps to prevent toxins from having to exit via the skin as blemishes or rashes. Herbal teas also help the skin. Alternate between dandelion, goldenseal, myrrh, pau d’arco, and red clovers. Caution: Do not use goldenseal on a daily basis for more than a week and do not use during pregnancy.
Skin Support Tea

Elder leaves and flowers
Elecampane root
Ground ivy
Juniper berries
Witch grass root
Mix the herbs in equal parts and steep 1 tsp. of the mixture in 1/2 cup boiling water. Sip 1/2 to 1 cup daily, unsweetened. Use daily over several months.
Speedwell Tea

2 parts speedwell
1 part black elder leaves
1 part English walnut leaves
1 part pansy
Mix herbs in the indicated proportions. Steep 1 tsp. of the mixture in 1/2 cup boiling water. Sip 1 to 1 1/2 cups daily, unsweetened.
Antioxidants are essential for skin health. Be certain to take vitamins A, C, and E, as well as bioflavonoids. Vitamin E protects against ultraviolet light damage and bioflavonoids improve the skin’s blood supply. Essential fatty acids, such as evening primrose oil, help prevent dehydration and wrinkling. Protease, an enzyme, will help to heal some skin disorders.
Dry brushing is important for a skin cleanse. It removes the top layer of old skin, helping to remove mucus residues and uric acid crystals. Use a natural bristle or a soft surgical scrub brush. Begin with the soles of your feet, and using a rotary motion, brush every inch of your skin except the nipples. Follow the brushing with a cleansing shower or bath.
Massage therapy will help improve skin tone by increasing circulation. Essential oils help to detoxify, nourish, tone, soothe, and support skin function. Essential oils that assist in a skin cleanse include lavender, geranium, sandalwood, and neroli. Add 15 drops of one oil, or a combination, to 2 ounces of a base or fixed oil and rub on the skin.
Poor diet adversely affects the immune system and the lymphatic system. Sugar and alcohol inhibit white blood cell activity. Sugar consumption (the amount of sugar in a sweetened soft drink) will stop white blood cell activity within 30 minutes and normal activity will not return for four to five hours.
To strengthen immune response, eat foods that are high in essential fatty acids, such as salmon, fresh tuna, and sea vegetables. It is also important to eat adequate amounts of protein and fresh fruits and vegetables.
Supporting lymph nutrients include vitamins A, C, E, and B complex, beta-carotene, iron, zinc, and selenium. The enzyme protease is a lymph and immune booster.
Echinacea extract and astragalus extract are deep lymph-cleansing herbs. Echinacea also reduces lymphatic congestion and swelling. Red root is a powerful lymphatic cleanser and is synergistic with Echinacea. Ocotillo flushes lymph congestion.
Regular exercise is critical for lymph flow in the body. Rhythmic aerobic exercise, such as walking, dancing, or “step” exercise, is helpful. Begin each exercise session with deep breathing and stretching.
Set a specific time to exercise and choose an activity you enjoy. The exercise should be convenient for you and one you can do at almost any time.
Be sure to shower after your exercise session to wash off the toxins excreted in your sweat.
Massage therapy and manual lymph drainage are helpful in encouraging lymphatic circulation. Acupuncture and acupressure can also be useful.
Alternating hot and cold showers will stimulate lymph circulation, as will breathing exercises.
The essential oils of geranium, juniper, and black pepper will assist a lymph cleanse when rubbed on the skin. Use 15 drops of oil in 1 ounce of a base or carrier oil. Eight to ten drops of these essential oils are also supportive of the lymph system when added to bath water.
Complex homeopathic remedies are helpful in cleansing and supporting the lymphatic system.
Diet is important in cleansing the blood. Follow a juice diet for three days, unless you have a degenerative disease. A juice diet or fast is not recommended in these cases because the toxins released by a fast may be more than the body and blood can detoxify.
After the fast, eat only very pure foods, including as much organic food as possible, and avoid canned, frozen, and processed foods. Do not eat food that contains any additives, including colors, flavors, and preservatives. Avoid sugar, sodas, artificial sweeteners, and fried foods.
In addition to pure, tolerated water, drink bottled mineral water throughout the day to hydrate and alkalize the body. Mild herb teas, such as sarsaparilla and pau d’arco, can improve body chemistry and enhance blood cleansing, as can chlorophyll.
Nutrients will help with a blood cleanse, particularly the antioxidants, which clean the blood and strengthen white blood cells. Buffered vitamin C in small doses throughout the day will cause a rapid improvement. Take enzymes to help with digestion, particularly protein digestion. Enzymes break down organisms and incompletely digested protein in the blood, enabling them to be destroyed by the immune system. Probiotics are important for building blood and improving digestion.
Many herbs, including red clover, dandelion, burdock, yellow dock, Echinacea, and Oregon grape root, cleanse the blood.
Essential oils, such as rosemary, cypress, and vetiver assist in blood cleansing. Use 15 drops of each oil in 1 ounce of base or carrier oil and rub on the skin. Eight to ten drops of each of these oils may also be used in bath water.
Aerobic exercise increases the level of oxygen in the blood, which assists with blood cleansing.
Massage therapy will increase circulation, and detoxification baths also help cleanse the blood.
Some people improve with an enema at the beginning and end of their blood cleanses, which prevents new toxins from entering the bloodstream.
end of part 4 concludes the organ detox———————————————————————————————————

%d bloggers like this: